JOURNAL OF MAGNETIC RESONANCEL35,54—-60 (1998)
ARTICLE NO. MN981530

A New Formalism for the Evaluation of Order-Fluctuation Modes
in Liquid Crystals from Field-Cycling NMR-Relaxometry Data

F. Grinberg, R. Kimmich, R.-O. Seitter, and D. Pusiol*
Sektion Kernresonanzspektroskopie, Univétditam, 89069 Ulm, Germany; antlUniversidad Nacional de Gdoba, 5000 Cadoba, Argentina

E-mail: farida.grinberg@physik.uni-ulm.de

Received August 12, 1997; revised March 24, 1998

A numerical procedure is presented which permits one to derive The discrimination of different NMR relaxation mechanisms

a formal distribution of collective fluctuation modes from experi- s usually based on the identification of characteristic fre

mental field-cycling NMR-relaxometry data of an ordered system. quency dispersion laws of spin—lattice relaxation. Typical ex

The purpose is to distinguish true order-fluctuation modes from amples are the well known square-root and linear dispersic

local reorientation mechanisms. The evaluation scheme is demon- |\ (14-19 reflecting director fluctuations of nematic and
strated using simulated as well as experimental data. Applications . . -

smectic crystals, respectively. However, such direct conclt

serving the elucidation and characterization of modified or limited . | ivle if th | . hani domi
director fluctuation modes as they occur with liquid crystals in sions are only possible If the relaxation mechanism dominat

pores or with lyotropic systems are discussed. Test experiments N @ yvide frquency range so that the identification of a powe
have been carried out with a potassium laurate system. o 10¢ |@W iS unambiguous. Another approach employed for the ir

Academic Press terpretation of the experimental data is to fit model expressiot
Key Words: spin-lattice relaxation; field-cycling relaxometry; for several superimposed relaxation mechanisBn$( 7, 17.
liquid crystals; director fluctuations; mode relaxation rates. For example, frequency dependences of relaxation rates

thermotropic MBBA @) (4-methoxybenzylideneth-butyla-
niline) and of lyotropic potassium-laurate water mixturésif
anisotropic phases were described in the rangeldf—10° Hz

Field-cycling NMR-relaxometry 1-3 has been used toas @ superposition of three processes due to (a) orientatiol
probe collective molecular motions in liquid crystals. Thes@irector fluctuations, (b) local molecular rotation, and (c) mo
motions represent a significant mechanism of spin-lattice fgcular self-diffusion. The relaxation data of phospholipic
laxation in thermotropic liquid crystals at frequencies belofeémbranes§) in liquid crystalline phase were evaluated in
10°-1¢ Hz. At higher frequencies, various types of nonterms of ODF, molecular rotation, “lateral” self-diffusion, and
collective motions due to translational diffusion and locdfanslationally induced rotations (RMTD). The problem of sucf
molecular rotations typ|ca||y dominate and tend to mask Orﬁlrocedures is that the choice of potential relaxation mechanisr
entational director fluctuations (ODF) in the Megahertz rdénds to be ambiguous due to the big number of fitting paramete
gime. However, motional mechanism&~13 contributing to N this paper, we therefore suggest a different evaluatio
spin relaxation in lyotropic liquid crystals and biological memstrategy. The idea is to translate the spin-lattice relaxatic
branes are less clear. In particular, slow non-collective m@ispersion data into a formal distribution of director fluctuatior
tional dynamics competing with order fluctuations in the lognodes irrespective of any additional motional component:
frequency range might arise due to reorientations mediated @pce having this formal distribution it would be much easier t
translational diffusion;(’ 6) (RMTD) a|ong the curved Surface_d|st|ngu|5h true collective modes from contributions which ir
These motions cannot be easily discriminated from ODF. gality are due to local processes, and which are of minc
disputive point of discussion is also the appropriate modellidgterest in this context. After outlining the formal procedure
of collective fluctuations in bilayer membrane0¢-13. Cer- the evaluation will be demonstrated with simulated as well 2
tain approachesl(, 1) are based on three-dimensional direcexperimental data.
tor fluctuations of thenematictype. In Ref. (2), however,
two-dimensional layer undulations of (uncoupled) membranes Il. EXPERIMENTAL
were suggested as a fluctuation mechanism. Later the attention
was drawn to the influence of layer coupling3] in bilayer Spin-lattice relaxation times of protons in lyotropic mixture
systems although it could not clearly be confirmed in expem{ potassium laurate/6.24% 1-decanol/68B¥ were mea-
mental studies9). sured with a home-made field-cycling relaxometer. The dete

I. INTRODUCTION
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tion frequency for protons was about 60 MHz. The main o

contribution to spin—lattice relaxation arises from the protons P (wo) = Szi){ef (&n(r, 0)8n(r, t))e 'dt, [5]
of potassium laurate. The data refer to 318, 303, and 291 K. o

The phases occurring at these temperatures are clasdiied (

19) as isotropic (ISO), nematic calamitidNf), and nematic \yhereS is the nematic order parametéd?y, the equilibrium

discotic (\Ny), respectively. The nematic phases are anisotropigrector is supposed to be oriented along the external magne
in their diamagnetic susceptibilitiea, which is positive for fie|q parallel to thez-axis of the Cartesian coordinate system
N; and negative foNy. The nematic calamitic phase wasng the internuclear vector parallel to the long molecular axe

shown (9) to contain elongated aggregates, whereas nematigyjrector fluctuations are usually expressed in terms of the
discotic systems consist of oblate particles. The sizes of thgyrier components in the reciprocal space

aggregates and the system phase diagram are specified in Refs.

(18, 19. It is worthwhile to note that the notation “isotropic 1

phase” with respect to lyotropic liquid crystals refers to a on(r, t) = v >, 8n(q, t)e 9", [6]

totally disordered micellar packing, and must not to be con- q

fused with an isotropic molecular dispersion.
whereV is the sample volume anglis the wave vector.

I1l. METHODICAL BACKGROUND Fluctuation modesn(qg, t) relax with exponential damping
(22) with ratest*(q)
The Zeeman spin-lattice relaxation rate for a system of two
dipolar-coupled spié nuclei separated by intermolecular dis- sn(g, t) = dn(q, 0)e W@, [7]
tancer is given by

The correlation functiorGope(t) thus represents a super-

[ o ar o position of overdamped relaxation processes with a broe
T = (477) 20r8” A9 (wo) + 49 (2w0)], (11 gistribution of mode relaxation rates
wherep, is the magnetic field constang,is the gyromagnetic * ot a1
ratio of protons, and: is Planck’s constant divided bym2 G(t)= | P(r e "dr, (8]
Motional spectral density(wg) at Larmor frequency, in Eq. 0
[1] is
whereP(7~ 1) is the weight function of fluctuation relaxation
. rates.
(o) :f G(t)e gt 2] Using Eq. [8] and carrying out the time integration the
. intensity function, Eq. [2], reduces to

-1

The quantityG(t) in Eq. [2] stands for the reduced dipolar P |7 P(r-1 T gt 9
auto-correlation function (see, for example, Rdf) (and re- (o) = (7 )wg 20 [9]
flects modulations of dipolar interactions by stochastic molec- -

ular motions. The relevant correlation function for relaxation ) )
by orientational director fluctuations is Our approach is now based on the reconstruction of tt

distribution functionP(7~ 1) using the numerical fit of Egs. [9],
[1] to experimental datd ~*(w,). The NNLS (nonnegatively
constrained least-squares) fitting proced@® Has been used
, . (see also Ref.24)). The integration in Eq. [9] is replaced by
where 8n(r, t) denotes the fluctuation of the instantaneoyge symmation over the limited range from a certain minima

director n(r, ) at each moment of time¢ apart from the (. -1y 5 {5 a certain maximalr(;1) value of the relaxation
equilibrium value(n)

Gopr(t) = (8n(r, 0)dn(r, 1)), [3]

rate
én(r, ) = n(r, t) —(n). [4] Tome -1
_1 2T, 1
I(wo) = X Pyl )iy 2 AT [10]
(Numerical coefficients connecting correlation functidbg) T 0 '

and Ggpge(t) can be found for instance in Ref2@).) The
contribution of ODF to the intensity function is then given bylhe reliability of the fitting procedure was at first proved for
the term (6, 2] the simple case of a distributid®(~*) consisting of only one
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where
K(@) = Koo @ + @) + Kaa2 + AxB?  [14]

] and n,(qg) are the effective viscositieqg, is the temperature,
- andkg is Boltzman'’s constant. Quantiti&s ,, K,,, andKs5in

E Eq. [14] are three basic elastic constants associated with spl;
] twist and bend, respectively, amlis the magnetic-flux den-
sity. In the following the magnetic-field term and the wave
. vector dependence of the viscosities will be ignored for sim
] plicity. Replacing a sum oveg-values in Eq. [11] by an
163 164 165 166 167 1(')8 integration and using Egs. [12], [13] gives

coo/2n

- KT 2 2miAe 2miAe 2ml)e
Hz o) = s 2 f f J

FIG. 1. Frequency dependences of the spin—lattice relaxation time simu- a=1J _ 2mir) Y — 2alre) ¥ — (2mIA)
lated according to Egs. [1], [10]. Curve 1 corresponds to Eq. [10] for a single 1 2 ,1( )
sum term withr—* = 27710° s~ *. Curve 2 corresponds to two equally weighted % T« \Q dadad
: Gl Y 1 7 o1 : -1 2 =) 0xaq,a4q,,
sum terms in Eq. [10] with;* = 2710° s~ andr, * = 27#10” s~ . The solid NoTo (Q) 05+ 7,7Qq)
lines represent fits of Eqgs. [1], [9].

(15]

where the integration limits are determined by the high-fre

or two discrete terms. The dispersion curves simulated usiigency cutoff of the continuum theory{is the characteristic
Egs. [1] and [10] are shown in Fig. 1. Curve 1 corresponds ¥@Ve length large compared to the molecular size). Clearl
a single sum term, Eq. [10], with > = 2710° s~ %. Curve 2 according to Egs. [15], [13], and [14] the contribution of
was calculated from two equally weighted terms wifnt =  director fluctuation modes to the spin-lattice relaxation rat
2m10° s Y and 7, = 2710" s~ L. Corresponding values ob-depends on anisotropic properti@d( 21, 23 of the elasticity

tained in the fitting procedure differed from those used in tHgNSOr- In the case of nematics the anisotropy of the elas
simulations by not more than 1-2%. constants is usually ignored (isotropic three-dimensional dire

tor fluctuations) and a one-constant approximation is consit
ered to be adequateKg; = K;; = K,,). In essentially
two-dimensional systems (bilayer membranes, smectics in a

In the frame of classical continuum theory of liquid crystal ence of the (_:oupling be_tween layers) anisotrqpic p_ropt_erti_(
(22) and using Egs. [6], [7] the intensity function, Eq. [5]. ecome most important smce_allowed deformations lie withil
reduces t016, 29 the transverse plane (undulation modes). In the case of col

pletely uncoupled layerk;; can be set to zero.
In the following we consider the casg;; = K, 4, K,,. The

IV. SIMULATED T,-DISPERSION CURVES FOR ODF

1, 2 , 27.%(0) problem is now to rewrite Eqg. [15] in a form suitable for an
o) =S 2 X (30, O 7" - [11] evaluation of the distribution functioR(r~*) as defined by
4 o=t ° ¢ Eq. [9]. This can be done by introducing new varialiigs =

v (Kaa/na) qX’ qya = (Kaa/na) Qy’ qza =V (K33/na) QZ
The én_(q, t) are two uncoupled component®?f of normal and carrying out the integration in polar coordinates over th
mode én(q, t) in two perpendicular directions within thevolume of a rotational ellipsoid25) (with the axis in the
(x, y) plane. These modes are indicative for proper diagonaldirection equal to 2(2/A.) V (Ks4/1,) and two axes in the
ization of free energy expressions. The mean square ampkrpendicular plane equal to 2¢2\.) V(K,./1.))- The re-
tudes of the transverse modes and their relaxation rate23re Eult is
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ococ\
. 7. 5q) . Figure 3a show® (') as reconstructed by fitting Eqgs. [9],
X P, (1,7(q ))72 —Tr dr,(a), [16]  [1] to simulated dispersion curves in both limiting cases. (Th
differences expressed by index have been ignored. This
where corresponds to the case of either equal constdpisandK,,
1 l( ) < <2’7T> K33
G DTS,
Pu(r.(a) = . [17]
1 [ Ur @) — 127/ Ko, 27\ K _ - (277 2K e
@) @AY Kagn, — U@ Kadn,' \a) m = = @ =1 =,

A graphical representation of Eq. [17] is given in Fig. 2or one of them being equal to zero.) The simulated dispersic

Limits of Eq. [17] are: curves are shown in Fig. 3b together with their fits (solid lines)
Case 1. K;=K,, =K, my=m=1. Reconstructed function®(7~ %) in Fig. 3a are in a good
agreement with the model predictions, Eqgs. [18] and [19]
P.(72%q)) = (7-q))™°S. (18] represented graphically by solid lines.

Another example demonstrates the reconstruction of tt

Case 2. K3 = 0. function P(r~ 1) for the case that the intensity functidi{w)

represents a sum of two discrete and one “continuoug/.)

2\ K, contributions, that is,
Pu(m. (@) = (r. ' (@)% 7)< (A) [19]
oo 27;1 215 1
The integration of Eq. [16] in Cases 1 and 2 is straightfor- $(wo) = Cy wh+ 71 G 3+ 2t C3 - [0

ward and leads in the low-frequency limit to well-known
dispersion laws¥4-19 T, « wf with g = 0.5in Case 1 and  Figure 4a shows the dispersion curve simulated using Eg
B = 1in Case 2. [1], [20] with 771 = 2710P s %, 7,1 = 2710% s7%, andC;
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FIG.3. (a)P(r%(qg)) obtained by fitting Egs. [1], [9] to th&,-dispersion curves shown in Fig. 3b. The numbers indicate the correspondence of the cu
in Figs. 3a and 3b. The solid lines represent Egs. [18] (curve 1) and [19] (curve 2). (b) Frequency dependences of the spin—lattice relaxation time s
according toT; « wf with 8 = 0.5 (curve 1) and3 = 1 (curve 2). The solid lines represent fits of Egs. [1], [9] to the data points. The fitted distributio
P(7~%(q)) are shown in Fig. 3a.
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FIG. 4. (a) Frequency dependence of the spin—lattice relaxation time simulated using Egs. [1], [26] With271(® s~ %, 7,1 = 2710° s~ * andC, =
C, = 0.46,C; = 0.08. Thesolid line was calculated based on the fit of Egs. [1], [9] to the data points. The fitted fulRtiort(q)) is shown in Fig. 4b.
(b) P(~*) obtained by fitting Eqs. [1], [9] to th&,-dispersion curve shown in Fig. 4a. (The functi®@r~?1) in this case is not the true probability function,
since we have omitted the proportionality coefficientfifw,) o« 1l/w, for simplicity when simulating the dispersion curve.)
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FIG. 5. (a) Frequency dependences of the proton spin—lattice relaxation time in the system potassium laurate/6.24% 1-decBp6l/6Bh&%olid lines
represent fits of Egs. [1], [9] to the data points. The fitted distributi®ws *(g)) are shown in Fig. 5b. (b) Fitted distributiofr~*(q)) derived from the
T,-dispersion curves of potassium laurate/6.24% 1-decanol/@3,6¥shown in Fig. 5a. The solid line represents a power-law funddpr *) o« (7)* with
k = 0.7.

= C, = 0.46,C; = 0.08. Thediscrete contributions produce[18], [19]. The same value of was observed in isotropic and
the distorted regions 1 and 2 in the dispersion curve. Theth nematic phases which differentiate by the type of orderir
weighting constants;,, C,, C5, were used in order to obtainof individual aggregates. Any coupling between aggregate
a reasonable shape of the simulated dispersion curve. The fittaas must be negligible.

functionP(r 1) is shown in Fig. 4b. It reproduces the expected

slope given by Eq. [19] and contains two peaksrat = VI. DISCUSSION AND CONCLUSIONS

6.05 X 10° s ! and 6.24x 10° s~ that are in a good

agreement with the valueg * and 7, * assumed for the sim- Field-cycling relaxometry data permits one to reconstruc
ulation. The solid line in Fig. 4a was recalculated based on tHe distribution function of mode relaxation rates in liquid
evaluated distribution functioR(7 %) and gives a good rep- crystals,P(r~*), using the numerical fit of Egs. [9], [1] to the

resentation of the original data points. experimental dependenc&s *(w,). This function is of basic
importance for the understanding of the dynamical propertie

V. EXPERIMENTAL T,-DISPERSION DATA OF of the system, and can be compared, where available,
LYOTROPIC LIQUID CRYSTALS analytical results. A good agreement of reconstructed functior

P(r~1) with predictions of classical theories was demon
Spin-lattice relaxation of a lyotropic mixture of potassiunstrated, Fig. 3a, using simulated dispersion curves in tw
laurate/6.24% 1-decanol/68.6%0 was studied in three dif- limiting cases: isotropic three-dimensional and essentially twc
ferent phase states: IS®,, andNy. Dispersion curves mea- dimensional order fluctuations. With respect to real objects tt
sured, respectively, at 318, 303, and 291 K are shown in Figethod is expected to visualize frequency ranges of validity c
5a. The fits of Egs. [9], [1] to experimental dependencekeory predictions and that of any deviations. This is expecte
T.1(wo) are represented by solid lines. The fitted distributioto be important for the investigation of microconfined nematic
functionsP(w 1) are shown in Fig. 5b. They can be empiricrystals and for handling the problems of low frequency cut
cally described by a power-law functi®{r ) « (v~ 1) with  offs imposed on ODF by finite pore sizes, for instance.
k = —0.7. Theobtained value ok does not coincide with any = The two-dimensional case resulting in the linear dependen
of the values corresponding to the limiting three-dimensionaf the distribution functiorP(r~%) on 14 *(q), Eq. [19], is
(k = —0.5) andtwo-dimensional ¢ = —1) cases, see Eqgs.assumedi?) to reflect surface undulations of biological mem-
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