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A numerical procedure is presented which permits one to derive
a formal distribution of collective fluctuation modes from experi-
mental field-cycling NMR-relaxometry data of an ordered system.
The purpose is to distinguish true order-fluctuation modes from
local reorientation mechanisms. The evaluation scheme is demon-
strated using simulated as well as experimental data. Applications
serving the elucidation and characterization of modified or limited
director fluctuation modes as they occur with liquid crystals in
pores or with lyotropic systems are discussed. Test experiments
have been carried out with a potassium laurate system. © 1998

Academic Press
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I. INTRODUCTION

Field-cycling NMR-relaxometry (1–3) has been used to
probe collective molecular motions in liquid crystals. These
motions represent a significant mechanism of spin–lattice re-
laxation in thermotropic liquid crystals at frequencies below
105–106 Hz. At higher frequencies, various types of non-
collective motions due to translational diffusion and local
molecular rotations typically dominate and tend to mask ori-
entational director fluctuations (ODF) in the Megahertz re-
gime. However, motional mechanisms (4–13) contributing to
spin relaxation in lyotropic liquid crystals and biological mem-
branes are less clear. In particular, slow non-collective mo-
tional dynamics competing with order fluctuations in the low
frequency range might arise due to reorientations mediated by
translational diffusion (4, 6) (RMTD) along the curved surface.
These motions cannot be easily discriminated from ODF. A
disputive point of discussion is also the appropriate modelling
of collective fluctuations in bilayer membranes (10–13). Cer-
tain approaches (10, 11) are based on three-dimensional direc-
tor fluctuations of thenematic type. In Ref. (12), however,
two-dimensional layer undulations of (uncoupled) membranes
were suggested as a fluctuation mechanism. Later the attention
was drawn to the influence of layer coupling (13) in bilayer
systems although it could not clearly be confirmed in experi-
mental studies (9).

The discrimination of different NMR relaxation mechanisms
is usually based on the identification of characteristic fre-
quency dispersion laws of spin–lattice relaxation. Typical ex-
amples are the well known square-root and linear dispersion
laws (14–16) reflecting director fluctuations of nematic and
smectic crystals, respectively. However, such direct conclu-
sions are only possible if the relaxation mechanism dominates
in a wide frequency range so that the identification of a power
law is unambiguous. Another approach employed for the in-
terpretation of the experimental data is to fit model expressions
for several superimposed relaxation mechanisms (3, 6, 7, 17).
For example, frequency dependences of relaxation rates of
thermotropic MBBA (3) (4-methoxybenzylidene-49-n-butyla-
niline) and of lyotropic potassium-laurate water mixtures (7) in
anisotropic phases were described in the range of'102–108 Hz
as a superposition of three processes due to (a) orientational
director fluctuations, (b) local molecular rotation, and (c) mo-
lecular self-diffusion. The relaxation data of phospholipid
membranes (6) in liquid crystalline phase were evaluated in
terms of ODF, molecular rotation, “lateral” self-diffusion, and
translationally induced rotations (RMTD). The problem of such
procedures is that the choice of potential relaxation mechanisms
tends to be ambiguous due to the big number of fitting parameters.

In this paper, we therefore suggest a different evaluation
strategy. The idea is to translate the spin–lattice relaxation
dispersion data into a formal distribution of director fluctuation
modes irrespective of any additional motional components.
Once having this formal distribution it would be much easier to
distinguish true collective modes from contributions which in
reality are due to local processes, and which are of minor
interest in this context. After outlining the formal procedure,
the evaluation will be demonstrated with simulated as well as
experimental data.

II. EXPERIMENTAL

Spin–lattice relaxation times of protons in lyotropic mixture
of potassium laurate/6.24% 1-decanol/68.6%D2O were mea-
sured with a home-made field-cycling relaxometer. The detec-
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tion frequency for protons was about 60 MHz. The main
contribution to spin–lattice relaxation arises from the protons
of potassium laurate. The data refer to 318, 303, and 291 K.
The phases occurring at these temperatures are classified (18,
19) as isotropic (ISO), nematic calamitic (Nc), and nematic
discotic (Nd), respectively. The nematic phases are anisotropic
in their diamagnetic susceptibilities,Dx, which is positive for
Nc and negative forNd. The nematic calamitic phase was
shown (19) to contain elongated aggregates, whereas nematic
discotic systems consist of oblate particles. The sizes of the
aggregates and the system phase diagram are specified in Refs.
(18, 19). It is worthwhile to note that the notation “isotropic
phase” with respect to lyotropic liquid crystals refers to a
totally disordered micellar packing, and must not to be con-
fused with an isotropic molecular dispersion.

III. METHODICAL BACKGROUND

The Zeeman spin–lattice relaxation rate for a system of two
dipolar-coupled spin1

2
nuclei separated by intermolecular dis-

tancer is given by

T1
21 5 S m0

4pD
2 3

20r 6g
4\2@(~v0! 1 4(~2v0!#, [1]

wherem0 is the magnetic field constant,g is the gyromagnetic
ratio of protons, and\ is Planck’s constant divided by 2p.
Motional spectral density((v0) at Larmor frequencyv0 in Eq.
[1] is

(~v0! 5 E
2`

`

G~t!e2iv0tdt. [2]

The quantityG(t) in Eq. [2] stands for the reduced dipolar
auto-correlation function (see, for example, Ref. (1)) and re-
flects modulations of dipolar interactions by stochastic molec-
ular motions. The relevant correlation function for relaxation
by orientational director fluctuations is

GODF~t! 5 ^dn~r , 0!dn~r , t!&, [3]

where dn(r, t) denotes the fluctuation of the instantaneous
director n(r, t) at each moment of timet apart from the
equilibrium value^n&

dn~r , t! 5 n~r , t! 2 ^n&. [4]

(Numerical coefficients connecting correlation functionsG(t)
and GODF(t) can be found for instance in Ref. (20).) The
contribution of ODF to the intensity function is then given by
the term (16, 21)

(~v0! 5 S2Re E
2`

`

^dn~r , 0!dn~r , t!&e2iv0tdt, [5]

whereS is the nematic order parameter (22), the equilibrium
director is supposed to be oriented along the external magnetic
field parallel to thez-axis of the Cartesian coordinate system,
and the internuclear vector parallel to the long molecular axes.

Director fluctuations are usually expressed in terms of their
Fourier components in the reciprocal space

dn~r , t! 5
1

V O
q

dn~q, t!e2iqzr, [6]

whereV is the sample volume andq is the wave vector.
Fluctuation modesdn(q, t) relax with exponential damping

(22) with ratest21(q)

dn~q, t! 5 dn~q, 0!e2~?t?/t~q¢!!. [7]

The correlation functionGODF(t) thus represents a super-
position of overdamped relaxation processes with a broad
distribution of mode relaxation rates

G~t! 5 E
0

`

P~t21!e2~?t?/t! dt21, [8]

whereP(t21) is the weight function of fluctuation relaxation
rates.

Using Eq. [8] and carrying out the time integration the
intensity function, Eq. [2], reduces to

(~v0! 5 E
2`

`

P~t21!
2t21

v0
2 1 t22 dt21. [9]

Our approach is now based on the reconstruction of the
distribution functionP(t21) using the numerical fit of Eqs. [9],
[1] to experimental dataT21(v0). The NNLS (nonnegatively
constrained least-squares) fitting procedure (23) has been used
(see also Ref. (24)). The integration in Eq. [9] is replaced by
the summation over the limited range from a certain minimal
(tmin

21 ) up to a certain maximal (tmax
21 ) value of the relaxation

rate

(~v0! < O
tmin

21

tmax
21

Pi~t i
21!

2t i
21

v0
2 1 t i

22 Dt i
21. [10]

The reliability of the fitting procedure was at first proved for
the simple case of a distributionP(t21) consisting of only one
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or two discrete terms. The dispersion curves simulated using
Eqs. [1] and [10] are shown in Fig. 1. Curve 1 corresponds to
a single sum term, Eq. [10], witht21 5 2p105 s21. Curve 2
was calculated from two equally weighted terms witht1

21 5
2p105 s21 and t2

21 5 2p107 s21. Corresponding values ob-
tained in the fitting procedure differed from those used in the
simulations by not more than 1–2%.

IV. SIMULATED T1-DISPERSION CURVES FOR ODF

In the frame of classical continuum theory of liquid crystals
(22) and using Eqs. [6], [7] the intensity function, Eq. [5],
reduces to (16, 21)

(~v0! 5
1

V2S
2 O

q

O
a51

2

^udna~q, 0!u2&
2ta

21~q!

v0
2 1 ta

22~q!
. [11]

The dna(q, t) are two uncoupled components (22) of normal
mode dna(q, t) in two perpendicular directions within the
( x, y) plane. These modes are indicative for proper diagonal-
ization of free energy expressions. The mean square ampli-
tudes of the transverse modes and their relaxation rates are (22)

^una~q, 0! u2& 5
kBTV

Ka~q!
[12]

ta
21~q! 5

Ka~q!

ha~q!
, [13]

where

Ka~q! 5 Kaa~qx
2 1 qy

2! 1 K33qz
2 1 DxB2 [14]

and ha(q) are the effective viscosities,T is the temperature,
andkB is Boltzman’s constant. QuantitiesK11, K22, andK33 in
Eq. [14] are three basic elastic constants associated with splay,
twist and bend, respectively, andB is the magnetic-flux den-
sity. In the following the magnetic-field term and the wave
vector dependence of the viscosities will be ignored for sim-
plicity. Replacing a sum overq-values in Eq. [11] by an
integration and using Eqs. [12], [13] gives

(~v0! 5
S2kBT

~2p!3 O
a51

2 E
2 ~2p/lc!

2p/lc E
2 ~2p/lc!

2p/lc E
2 ~2p/lc!

2p/lc

3
1

hata
21~q!

2ta
21~q!

vo
2 1 ta

22~q!
dqxdqydqz, [15]

where the integration limits are determined by the high-fre-
quency cutoff of the continuum theory (lc is the characteristic
wave length large compared to the molecular size). Clearly,
according to Eqs. [15], [13], and [14] the contribution of
director fluctuation modes to the spin–lattice relaxation rate
depends on anisotropic properties (20, 21, 25) of the elasticity
tensor. In the case of nematics the anisotropy of the elastic
constants is usually ignored (isotropic three-dimensional direc-
tor fluctuations) and a one-constant approximation is consid-
ered to be adequate (K33 5 K11 5 K22). In essentially
two-dimensional systems (bilayer membranes, smectics in ab-
sence of the coupling between layers) anisotropic properties
become most important since allowed deformations lie within
the transverse plane (undulation modes). In the case of com-
pletely uncoupled layersK33 can be set to zero.

In the following we consider the caseK33 # K11, K22. The
problem is now to rewrite Eq. [15] in a form suitable for an
evaluation of the distribution functionP(t21) as defined by
Eq. [9]. This can be done by introducing new variablesq̃xa 5
=(Kaa/ha) qx, q̃ya 5 =(Kaa/ha) qy, q̃za 5 =(K33/ha) qz

and carrying out the integration in polar coordinates over the
volume of a rotational ellipsoid (25) (with the axis in the
z-direction equal to 2(2p/lc) =(K33/ha) and two axes in the
perpendicular plane equal to 2(2p/lc) =(Kaa/ha)). The re-
sult is

FIG. 1. Frequency dependences of the spin–lattice relaxation time simu-
lated according to Eqs. [1], [10]. Curve 1 corresponds to Eq. [10] for a single
sum term witht21 5 2p105 s21. Curve 2 corresponds to two equally weighted
sum terms in Eq. [10] witht1

21 5 2p105 s21 andt2
21 5 2p107 s21. The solid

lines represent fits of Eqs. [1], [9].
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where

A graphical representation of Eq. [17] is given in Fig. 2.
Limits of Eq. [17] are:

Case 1. K33 5 Kaa 5 K; h1 5 h2 5 h.

Pa~ta
21~q!! 5 ~t21~q!!20.5. [18]

Case 2. K33 5 0.

Pa~ta
21~q!! 5 ~ta

21~q!!21, ta
21~q! ! S2p

lc
D 2Kaa

ha

. [19]

The integration of Eq. [16] in Cases 1 and 2 is straightfor-
ward and leads in the low-frequency limit to well-known
dispersion laws (14–16) T1 } vo

b with b 5 0.5 in Case 1 and
b 5 1 in Case 2.

Figure 3a showsP(t21) as reconstructed by fitting Eqs. [9],
[1] to simulated dispersion curves in both limiting cases. (The
differences expressed by indexa have been ignored. This
corresponds to the case of either equal constantsK11 andK22

or one of them being equal to zero.) The simulated dispersion
curves are shown in Fig. 3b together with their fits (solid lines).
Reconstructed functionsP(t21) in Fig. 3a are in a good
agreement with the model predictions, Eqs. [18] and [19],
represented graphically by solid lines.

Another example demonstrates the reconstruction of the
function P(t21) for the case that the intensity function((v0)
represents a sum of two discrete and one “continuous” (} 1/v0)
contributions, that is,

(~v0! 5 C1

2t1
21

v0
2 1 t1

22 1 C2

2t2
21

v0
2 1 t2

22 1 C3

1

v0
. [20]

Figure 4a shows the dispersion curve simulated using Eqs.
[1], [20] with t1

21 5 2p106 s21, t2
21 5 2p108 s21, andC1

Pa~ta
21~q!! 5 5

1

Îta
21~q!

, 0 # ta
21~q! , S2p

lc
D 2K33

ha

1

Îta
21~q!

Î 1/ta
21~q! 2 1/~2p/lc!

2 Kaa/ha

1/~2p/lc!
2 K33/ha 2 1/~2p/lc!

2 Kaa/ha

, S2p

lc
D 2K33

ha

# ta
21~q! , S2p

lc
D 2Kaa

ha

. [17]

FIG. 2. Graphical representation of Eq. [17] forKaa/K33 5 1000.
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FIG. 4. (a) Frequency dependence of the spin–lattice relaxation time simulated using Eqs. [1], [20] witht1
21 5 2p106 s21, t2

21 5 2p108 s21 andC1 5
C2 5 0.46, C3 5 0.08. Thesolid line was calculated based on the fit of Eqs. [1], [9] to the data points. The fitted functionP(t21(q)) is shown in Fig. 4b.
(b) P(t21) obtained by fitting Eqs. [1], [9] to theT1-dispersion curve shown in Fig. 4a. (The functionP(t21) in this case is not the true probability function,
since we have omitted the proportionality coefficient in((v0) } 1/v0 for simplicity when simulating the dispersion curve.)

FIG. 3. (a) P(t21(q)) obtained by fitting Eqs. [1], [9] to theT1-dispersion curves shown in Fig. 3b. The numbers indicate the correspondence of the curves
in Figs. 3a and 3b. The solid lines represent Eqs. [18] (curve 1) and [19] (curve 2). (b) Frequency dependences of the spin–lattice relaxation time simulated
according toT1 } vo

b with b 5 0.5 (curve 1) andb 5 1 (curve 2). The solid lines represent fits of Eqs. [1], [9] to the data points. The fitted distributions
P(t21(q)) are shown in Fig. 3a.
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5 C2 5 0.46,C3 5 0.08. Thediscrete contributions produce
the distorted regions 1 and 2 in the dispersion curve. The
weighting constants,C1, C2, C3, were used in order to obtain
a reasonable shape of the simulated dispersion curve. The fitted
functionP(t21) is shown in Fig. 4b. It reproduces the expected
slope given by Eq. [19] and contains two peaks att21 5
6.05 3 106 s21 and 6.243 108 s21 that are in a good
agreement with the valuest1

21 andt2
21 assumed for the sim-

ulation. The solid line in Fig. 4a was recalculated based on the
evaluated distribution functionP(t21) and gives a good rep-
resentation of the original data points.

V. EXPERIMENTAL T1-DISPERSION DATA OF
LYOTROPIC LIQUID CRYSTALS

Spin–lattice relaxation of a lyotropic mixture of potassium
laurate/6.24% 1-decanol/68.6%D2O was studied in three dif-
ferent phase states: ISO,Nc, andNd. Dispersion curves mea-
sured, respectively, at 318, 303, and 291 K are shown in Fig.
5a. The fits of Eqs. [9], [1] to experimental dependences
T1(v0) are represented by solid lines. The fitted distribution
functionsP(v21) are shown in Fig. 5b. They can be empiri-
cally described by a power-law functionP(t21) } (t21)k with
k 5 20.7. Theobtained value ofk does not coincide with any
of the values corresponding to the limiting three-dimensional
(k 5 20.5) andtwo-dimensional (k 5 21) cases, see Eqs.

[18], [19]. The same value ofk was observed in isotropic and
both nematic phases which differentiate by the type of ordering
of individual aggregates. Any coupling between aggregates
thus must be negligible.

VI. DISCUSSION AND CONCLUSIONS

Field-cycling relaxometry data permits one to reconstruct
the distribution function of mode relaxation rates in liquid
crystals,P(t21), using the numerical fit of Eqs. [9], [1] to the
experimental dependencesT21(v0). This function is of basic
importance for the understanding of the dynamical properties
of the system, and can be compared, where available, to
analytical results. A good agreement of reconstructed functions
P(t21) with predictions of classical theories was demon-
strated, Fig. 3a, using simulated dispersion curves in two
limiting cases: isotropic three-dimensional and essentially two-
dimensional order fluctuations. With respect to real objects the
method is expected to visualize frequency ranges of validity of
theory predictions and that of any deviations. This is expected
to be important for the investigation of microconfined nematic
crystals and for handling the problems of low frequency cut-
offs imposed on ODF by finite pore sizes, for instance.

The two-dimensional case resulting in the linear dependence
of the distribution functionP(t21) on 1/t21(q), Eq. [19], is
assumed (12) to reflect surface undulations of biological mem-

FIG. 5. (a) Frequency dependences of the proton spin–lattice relaxation time in the system potassium laurate/6.24% 1-decanol/68.6%D2O. The solid lines
represent fits of Eqs. [1], [9] to the data points. The fitted distributionsP(t21(q)) are shown in Fig. 5b. (b) Fitted distributionsP(t21(q)) derived from the
T1-dispersion curves of potassium laurate/6.24% 1-decanol/68.6%D2O shown in Fig. 5a. The solid line represents a power-law functionP(t21) } (t)k with
k 5 0.7.
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branes and thus must be relevant for a big but unsufficiently
explored field of investigations. Our first study of lyotropic
mixtures of potassium laurate/6.24% 1-decanol/68.6%D2O,
however, did not give the evidence for any non-negligible
contribution of director fluctuation modes within the investi-
gated frequency range. This conclusion is based on the obser-
vation of similar behaviour of experimental dependences
T1(v0), Fig. 5a, as well as of evaluated functionsP(t21), Fig.
5b, both in isotropic and anisotropic phases. Besides, the fitted
value k 5 20.7 of function P(t21) } (t21)k does not
concide with the predicted valuek 5 21, Eq. [19].

The absence of essential differences in isotropic and nematic
phases suggests that strongT1-dispersions observed in the
whole frequency range down to a few KHz must reflect rather
slow internal motional processes associated with individual
molecular aggregates. These motions may be of a rather com-
plicated nature. A suitable basis for discussion might be, for
example, the RMTD (4) which in principle could also be
analysed in terms of Eq. [9]. This is to be considered in future
discussions along with systematic experimental studies of sys-
tems at various concentrations of amphiphilic molecules.

The reconstruction ofP(t21) directly from field-cycling
relaxometry data promises to be particularly useful in cases
when director fluctuations are to be distinguished from non-
collective relaxation mechanisms. Note that if several mecha-
nisms each dominating in a certain frequency range are super-
imposed, their contributions toP(t21) appear separately
whereas they reveal themselves in the relaxation dispersion
curves in a much less distinct manner. That is, the concrete
knowledge and parameter fits of all contributing mechanisms
are not required. A certain analogy can be seen here with the
analysis of FIDs in terms of Fourier transformed spectra. The
FIDs contain the same information as the spectra, of course,
but cannot directly be “read.”

Although field-cycling relaxometry has proved to be an
efficient tool for the elucidation of ODF in liquid crystals, an
unambiguous discrimination of collective and non-collective
molecular motions on the basis of field-cycling relaxometry
exclusively was not always possible. New perspectives were
recently recognized in a favourable combination of field-cy-
cling relaxometry and a new experiment based on the dipolar-
correlation effect (26–29) (DCE) which is extremely sensitive
to the order and ODF. The DCE permits one to monitor dipolar
correlations in the time scale from'1024 s up to the order of
spin–lattice relaxation times. This extends the low frequency
range of the field-cycling relaxometry by an additional 3
orders. The evaluation ofT1-dispersion data in terms of
P(t21) can thus be compared with the distribution derived
from DCE data.
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